Directional Spreading Function of the Gravity-Capillary Wave Spectrum Derived from Radar Observations
نویسندگان
چکیده
Directional spreading function of the gravity-capillary wave spectrum can provide the high-wavenumber wave energy distribution among different directions on the sea surface. The existing directional spreading functions have been mainly developed for the low-wavenumber gravity wave with buoy data. In this paper, we use radar observations to derive the directional spreading function of the gravity-capillary wave spectrum, which is expressed as the second-order Fourier series expansion. So far the standard form of the second-order harmonic coefficient has not been proposed to correctly unify the gravity and gravity-capillary wave. Our strategy is to introduce a correcting term to replace the inaccurate gravity-capillary spectral component in Elfouhaily’s directional spreading function. The second-order harmonic coefficient at L, C and Ku band calculated by the radar observation is used to fit the correcting term to obtain one at the full gravity-capillary wave region. According to our proposed the directional spreading function, there is a spectral region between the gravity and gravity-capillary range where it signifies the negative upwind–crosswind asymmetry at low and moderate speed range. And this is not reflected by the previous models, but has been confirmed by radar observations. The Root Mean Square Difference (RMSD) of the proposed second-order harmonic coefficient versus the radar-observed one at L, C band Ku band is 0.0438, 0.0263 and 0.0382, respectively. The overall bias and RMSD are −0.0029 and 0.0433 for the whole second-order harmonic coefficient range, respectively. The result verifies the accuracy of the proposed directional spreading function at L, C band Ku band.
منابع مشابه
The Mean-Square Slope of Ocean Surface Waves and Its Effects on Radar Backscatter
The mean-square slope (MSS) of the sea surface for upwind and crosswind is derived, based on Phillips’ equilibrium spectrum and the model herein on gravity–capillary wave spectrum. The MSS integrated from the above two spectra over high-frequency dissipation length (1 mm) fits the optical observations very well. The radar backscatter cross section (RBCS), calculated from specular reflection the...
متن کاملAn Improved Spectrum Model for Sea Surface Radar Backscattering at L-Band
L-band active microwave remote sensing is one of the most important technical methods of ocean environmental monitoring and dynamic parameter retrieval. Recently, a unique negative upwind-crosswind (NUC) asymmetry of L-band ocean backscatter over a low wind speed range was observed. To study the directional features of L-band ocean surface backscattering, a new directional spectrum model is pro...
متن کاملSTABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.
Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...
متن کاملEFFECT OF COUNTERPROPAGATING CAPILLARY GRAVITY WAVE PACKETS ON THIRD ORDER NONLINEAR EVOLUTION EQUATIONS IN THE PRESENCE OF WIND FLOWING OVER WATER
Asymptotically exact and nonlocal third order nonlinear evolution equations are derivedfor two counterpropagating surface capillary gravity wave packets in deep water in thepresence of wind flowing over water.From these evolution equations stability analysis ismade for a uniform standing surface capillary gravity wave trains for longitudinal perturbation. Instability condition is obtained and g...
متن کاملCharacterization of Liquid Bridge in Gas/Oil Gravity Drainage in Fractured Reservoirs
Gravity drainage is the main mechanism which controls the oil recovery from fractured reservoirs in both gas-cap drive and gas injection processes. The liquid bridge formed between two adjacent matrix blocks is responsible for capillary continuity phenomenon. The accurate determination of gas-liquid interface profile of liquid bridge is crucial to predict fracture capillary pressure precisely. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017